## Ultrathin Sirolimus-Eluting Bioresorbable Polymer DES as a Standard of Care and Comparison

#### David E. Kandzari, MD, FACC, FSCAI

Chief Scientific Officer Director, Interventional Cardiology

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org



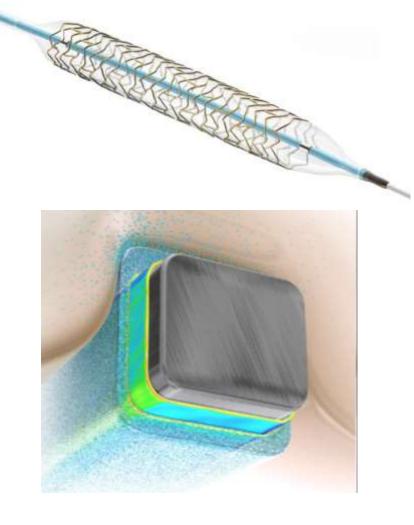
## Disclosure

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below

| Affiliation/Financial Relationship   | Company                                                                                |
|--------------------------------------|----------------------------------------------------------------------------------------|
| Institutional Grant/Research Support | Biotronik, Boston Scientific,<br>Medtronic CardioVascular, Medinol, Orbus Neich        |
| Consulting Fees/Honoraria            | Biotronik, Boston Scientific Corporation,<br>Medtronic CardioVascular, Cardinal Health |
| Major Stock Shareholder/Equity       | None                                                                                   |
| Royalty Income                       | None                                                                                   |
| Ownership/Founder                    | None                                                                                   |
| Intellectual Property Rights         | None                                                                                   |
| Other Financial Benefit              | None                                                                                   |



## Drug Eluting Stent Innovation Perspective


- Persistence of adverse events with both first generation and contemporary permanent polymer-based DES presents an opportunity for iterative improvement
- Advancements include thinner struts, stent design modifications, improvement in polymer biocompatibility and most recently the development of bioresorbable polymers
  - BP control drug release while allowing simultaneous (or subsequent) dissolution of the polymer material, eliminating the stimulus for chronic inflammation and hypothetically restoring the stent phenotype to an inert bare metal stent
- Although previous comparative studies have reported statistical non-inferiority between bioresorbable and permanent polymer DES, no study to date has demonstrated a statistically meaningful difference in clinical outcomes



## Orsiro Ultrathin Strut (BP SES) Stent System

| Stent material         | L-605 Cobalt-Chromium                                                                                                        |   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|---|
| Strut thickness        | 60 µm*                                                                                                                       |   |
| Polymer material       | Poly-L-lactic acid (PLLA)                                                                                                    |   |
| Polymer type           | Bioresorbable, asymmetric<br>circumferential thickness; scission<br>begins immediately with 24 month<br>complete degradation |   |
| Passive coating        | Amorphous silicon carbide                                                                                                    |   |
| Antiproliferative drug | Sirolimus (1.4 µg/mm²), >80%<br>eluted in first 90 days                                                                      | _ |

\*For 2.25mm to 3.0mm diameter stents, 80  $\mu$ m for >3.0 mm diameter stents





## Randomised Clinical Trials Involving Orsiro BP SES

|                  | <b>BIOFLOW II</b>                                                                                         | <b>BIOFLOW IV</b>                            | BIOSCIENCE                                  | BIO-RESORT                                                          |
|------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| Location         | Europe                                                                                                    | Europe, Japan                                | Switzerland                                 | Netherlands                                                         |
| Design           | Randomised 2:1 vs. Xience<br>Prime                                                                        | Randomised 2:1 vs. Xience<br>Prime/Xpedition | Randomised (1:1 vs<br>Xience Prime)         | Randomised (1:1:1, Orsiro,<br>Synergy, Resolute<br>Integrity)       |
| Primary Endpoint | LLL @ 9 Months                                                                                            | TVF @ 12 Months                              | TLF @ 12 Months                             | TVF @ 12 Months                                                     |
| Enrollment       | 452 (298 Orsiro, 154 Xience)                                                                              | 579 (387 Orsiro, 192 Xience)                 | 2,119 (1,063 Orsiro,<br>1,056 Xience)       | 3,514 (1,172 Synergy,<br>1,169 Orsiro, 1,173<br>Resolute Integrity) |
| Inclusion        | 1 to 2 de novo lesions<br>Separate arteries                                                               | 1 to 2 de novo lesions<br>Separate arteries  | All-comers                                  | All-comers                                                          |
| Follow-up        | 1, 6, 12 months and 2 to 5<br>year clinical<br>9 month clinical and<br>angiographic (60 IVUS<br>patients) | 1, 6, 12 months and 2 to 5 year clinical     | 1, 6, 12 months and<br>2 to 5 year clinical | 1 and 12 month and 2 to 5 year clinical                             |



#### **BIOFLOW V Trial Design** Patients from two prior multi-centre regulatory trials BIOFLOW V (2:1 RCT) Prospective **BIOFLOW II (2:1 RCT) BIOFLOW IV (2:1 RCT)** Multi-centre 1334 randomised 452 randomised<sup>‡</sup> 579 randomised 884 BP SES\* 298 BP SES 387 BP SES 450 DP EES\* **154 DP EES 192 DP EES** BIOFLOW V (n=1,260) 12 mo. Follow-up, TLF Secondary Endpoint 12 mo. Follow-up, TLF Primary Endpoint BIOFLOW II (n=418) and BIOFLOW IV (n=530) patients met the pre-specified BIOFLOW V ITT population criteria<sup>§</sup> Bayesian analysis population (n=2,208) Non-inferiority analysis of TLF at 12 Months employing Bayesian approach

\* BP SES: Bioresorbable polymer sirolimus-eluting stent(s)

+DP EES: Durable polymer everolimus-eluting stent(s)

\$Six additional patients were enrolled and received a randomization assignment in BIOFLOW II, 4 experienced procedural complications prior to stenting and

two patients withdrew consent prior to stenting but did not receive any study stent, and were excluded from the ITT population.

§ BIOFLOW V ITT population criteria: BIOFLOW V enrolment criteria, at least 330 days of follow-up or experienced an endpoint event prior to 330 days.



## Key Enrollment Criteria

#### **Inclusion Criteria**

- Age  $\geq$  18 years
- IHD, stable or unstable angina, or silent ischaemia
- ≤ 3 de novo target lesions in ≤ 2 native target vessels (TV)
- RVD  $\geq$  2.25 mm and  $\leq$  4.0 mm
- LL ≤ 36 mm
- TIMI flow > 1
- Eligible for DAPT therapy (aspirin +  $P_2Y_{12}$ )
- Provided informed consent

#### **Exclusion Criteria**

- Recent (< 72 hours prior to procedure) STEMI or hemodynamically unstable NSTEMI/ ACS patients
- Chronic total occlusions, bypass grafts
- Bifurcations with side branch > 2.0 mm
- In-stent restenosis or active stent thrombosis
- LVEF < 30%
- Prior PCI within 30 days (non-TV) or within 9 months (TV)
- Planned staged PCI post-procedure
- Renal impairment > 2.5 mg/dL or 221 μmol/L or dialysis dependent
- Excessively tortuous/ angulated or severely calcified (operator visual assessment)



Doros et al. Am Heart J DOI: http://dx.doi.org/10.1016/j.ahj.2017.08.001

## BIOFLOW V Enrollment

- 1,334 patients randomised between May 2015 and March 2016
  - -884 Orsiro and 450 Xience
- Patients enrolled in 13 countries in North America (665), Europe (390), Israel (231), Asia (36), and Australia and New Zealand (12)
- 12 month follow-up completed May 2017



#### **BIOFLOW V**

#### **Baseline Clinical Characteristics**

| <b>Clinical Characteristics</b> | BP SES (N=884) | DP EES (N=450) |
|---------------------------------|----------------|----------------|
| Age, years                      | 64.5 ± 10.3    | 64.6 ± 10.7    |
| Female                          | 25.3%          | 27.1%          |
| Hypertension                    | 79.7%          | 80.5%          |
| Hyperlipidemia                  | 78.9%          | 82.4%          |
| Diabetes mellitus               | 34.0%          | 37.0%          |
| Prior MI                        | 27.4%          | 25.9%          |
| Prior PCI                       | 36.8%          | 33.0%          |
| Prior CABG                      | 7.1%           | 5.2%           |
| Current smoking                 | 23.6%          | 22.7%          |
| Clinical presentation           |                |                |
| Stable angina                   | 48.4%          | 47.4%          |
| Acute coronary syndrome         | 51.4%          | 49.6%          |

Kandzari et al. Lancet 2017

#### BIOFLOW V Baseline Angiographic Characteristics

| Angiographic Characteristics  | BP SES (N=1,051 lesions) | DP EES (N=561 lesions) |
|-------------------------------|--------------------------|------------------------|
| Target lesion vessel          |                          |                        |
| Left anterior descending      | 41.0%                    | 41.2%                  |
| Left circumflex               | 26.6%                    | 26.0%                  |
| Right coronary artery         | 32.4%                    | 32.8%                  |
| Thrombus                      | 1.0%                     | 0.9%                   |
| Bifurcation lesion            | 14.8%                    | 15.0%                  |
| Moderate/severe calcification | 24.0%                    | 26.7%                  |
| Moderate/severe tortuosity    | 58.8%                    | 61.5%                  |
| ACC/AHA lesion class B2/C     | 72.6%                    | 75.9%                  |

#### BIOFLOW V Procedural Characteristics

| Angiographic/Procedural Results | BP SES (N=1,051 lesions) | DP EES (N=561 lesions) |
|---------------------------------|--------------------------|------------------------|
| Lesion length                   | 13.3 ± 7.6               | 13.2 ± 7.7             |
| Reference vessel diameter       | $2.6 \pm 0.5$            | $2.6 \pm 0.6$          |
| No. target lesions/pt*          | $1.2 \pm 0.4$            | $1.3 \pm 0.5$          |
| % diameter stenosis, pre        | 55.4 ± 13.3              | 55.9 ± 13.5            |
| % diameter stenosis, post       | 7.1 ± 9.8                | $7.4 \pm 9.8$          |
| Post-dilation performed         | 47.7%                    | 46.2%                  |
| No. stents/lesion*              | $1.07 \pm 0.3$           | $1.13 \pm 0.4$         |
| Stent length/lesion             | 20.8 ± 9.1               | 21.8 ± 10.5            |
| Overlapping stents*             | 9.4%                     | 15.0%                  |

\**P*<0.05 for comparison Kandzari et al. Lancet 2017

#### BIOFLOW V Procedural Outcomes

|                                | BP SES            | DP EES          | P value |
|--------------------------------|-------------------|-----------------|---------|
| Lesion success*                | 1102/1107 (99.5%) | 579/583 (99.3%) | 0.505   |
| Device success <sup>+</sup>    | 1082/1107 (97.7%) | 566/583 (97.1%) | 0.415   |
| Procedure success <sup>‡</sup> | 827/881 (93.9%)   | 401/445 (90.1%) | 0.019   |

Kandzari et al. Lancet 2017

\*Lesion success defined as attainment of < 30% residual stenosis of the target lesion using any percutaneous method.

<sup>+</sup>**Device success** defined as attainment of < 30% residual stenosis of the target lesion using the assigned study stent only.

<sup>†</sup>**Procedure success** defined as attainment of < 30% residual stenosis of the target lesion using the assigned study stent only without occurrence of in-hospital major adverse cardiac events (MACE; composite of all-cause death, Q-wave or non-Q-wave MI, and any clinical-driven TLR).



#### BIOFLOW V 30 Day Outcomes

|                       | BP SES (N=884) | DP EES (N=450) | P value |
|-----------------------|----------------|----------------|---------|
| All-cause death       | 0.1%           | 0.2%           | 1.000   |
| Myocardial infarction | 4.3%           | 6.9%           | 0.050   |
| In-hospital MI        | 3.9%           | 6.7%           | 0.029   |
| MI >3X ULN            | 2.3%           | 4.5%           | 0.04    |
| MI >5X ULN            | 0.8%           | 2.4%           | 0.02    |
| TLR                   | 0.5%           | 0.7%           | 0.694   |
| Stent thrombosis      | 0.3%           | 0.2%           | 1.000   |
| TLF                   | 4.2%           | 7.1%           | 0.026   |
| TVF                   | 4.3%           | 7.1%           | 0.037   |

All data represented as intention to treat Kandzari et al. Lancet 2017

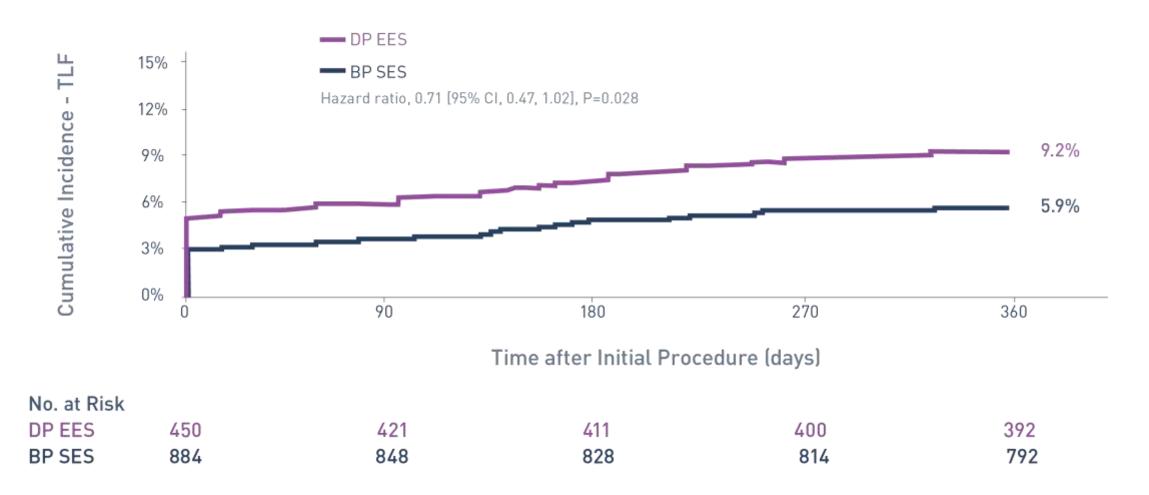
## BIOFLOW V Primary Endpoint: 12 Month Target Lesion Failure

|                       | Orsiro<br>BP SES<br>(n=884) | Xience<br>DP EES<br>(n=450) | P value |
|-----------------------|-----------------------------|-----------------------------|---------|
| Target lesion failure | 6.2%                        | 9.6%                        | 0.040   |
| Cardiac death         | 0.1%                        | 0.7%                        | 0.115   |
| Target vessel MI      | 4.7%                        | 8.3%                        | 0.016   |
| Clinically-driven TLR | 2.0%                        | 2.4%                        | 0.686   |

All data represented as intention to treat

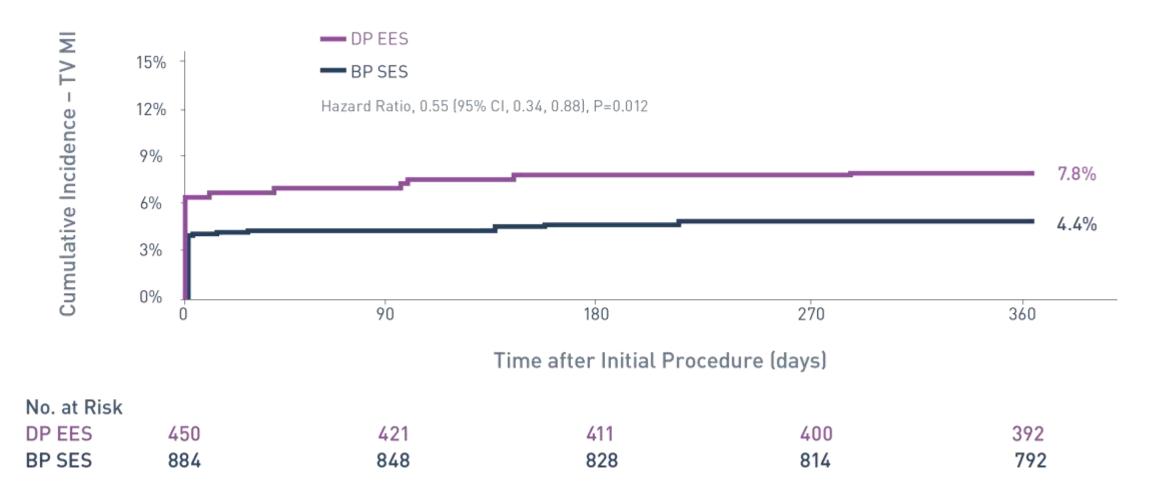
Kandzari et al. Lancet 2017




## BIOFLOW V Pooled Bayesian Analysis: BIOFLOW V, II and IV Trials

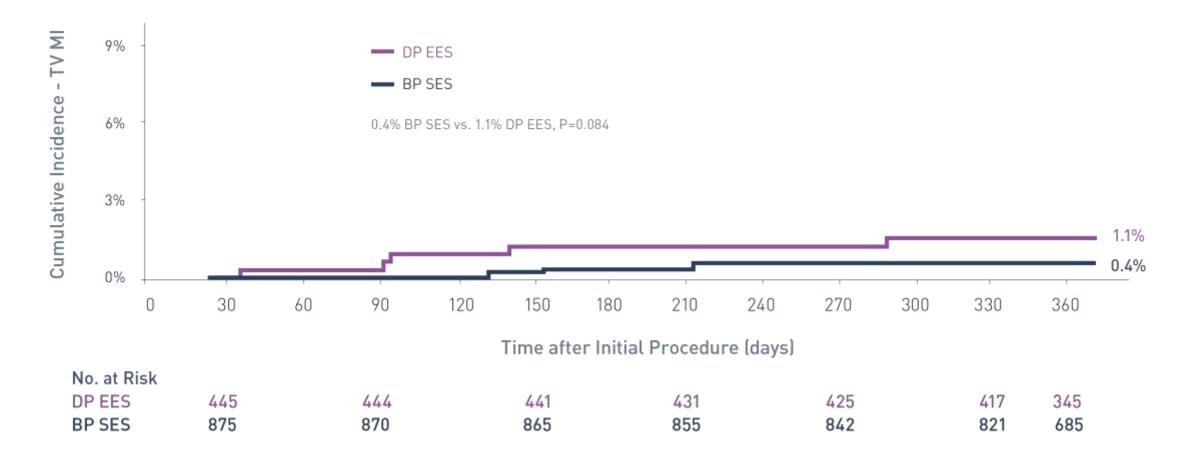
|                                                                                    | Orsiro<br>BP SES<br>(n=1466)    | Xience<br>DP EES<br>(n=742)      | Rate<br>difference          | Posterior p                    | robability                |
|------------------------------------------------------------------------------------|---------------------------------|----------------------------------|-----------------------------|--------------------------------|---------------------------|
| Target lesion failure<br>(Bayesian analysis)                                       |                                 |                                  |                             | Noninferiority<br>margin 3.85% | Superiority<br>(post-hoc) |
| 12-Month Rate,<br>posterior mean<br>± estimate of SD (%),<br>95% Credible Interval | 6.3 ± 0.8<br>(4.9 <i>,</i> 7.9) | 8.9 ± 1.2<br>(6.7 <i>,</i> 11.4) | -2.6<br>(-5.5 <i>,</i> 0.1) | 100.0%                         | 96.9%                     |

Kandzari et al. Lancet 2017




## BIOFLOW V Primary Endpoint: 12 Month Target Lesion Failure






## BIOFLOW V 12 Month Target Vessel-Related Myocardial Infarction





## BIOFLOW V Landmark Analysis: Target Vessel MI, 30 Days to 12 Months





## BIOFLOW V Stent Thrombosis

#### 12 Month DAPT Adherence: 92.1% BP SES, 91.2% DP EES

|                                           | BP SES (N=884) | DP EES (N=450) | P value |
|-------------------------------------------|----------------|----------------|---------|
| Stent Thrombosis                          |                |                |         |
| Any stent thrombosis                      | 0.5%           | 1.2%           | 0.175   |
| Definite                                  | 0.5%           | 0.7%           | 0.694   |
| Definite/Probable                         | 0.5%           | 0.7%           | 0.694   |
| Timing of Event (Definite/Probable ST)    |                |                |         |
| Acute (≤ 24 hours)                        | 0.1%           | 0.0%           | 1.000   |
| Sub-acute (> 24 hours and $\leq$ 30 days) | 0.2%           | 0.2%           | 1.000   |
| Late (> 30 days and $\leq$ 1 year)        | 0.1%           | 0.5%           | 0.264   |
| Timing of Event (Any ST)                  |                |                |         |
| Acute (≤ 24 hours)                        | 0.1%           | 0.0%           | 1.000   |
| Sub-acute (> 24 hours and ≤ 30 days)      | 0.2%           | 0.2%           | 1.000   |
| Late (> 30 days and ≤ 1 year)             | 0.1%           | 0.9%           | 0.047   |

Kandzari et al. Lancet 2017

#### **BIOFLOW V** Target Lesion Failure at 12 Months by Subgroups

| Subgroup                                                                                                                                                                                | BP SES<br>(N=884) | DP EES<br>(N=450) | Favors BP SES Favors DP EES | HR and 95% CI     | P Value for<br>Interaction |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------|-------------------|----------------------------|
| Vessel Size                                                                                                                                                                             | no. of events     | /total.no.[%]     |                             |                   | 0.37                       |
| Small Vessels*                                                                                                                                                                          | 43/554 [7.8]      | 31/290 (10.7)     |                             | 0.71 (0.45, 1.13) |                            |
| Large Vessels                                                                                                                                                                           | 9/269 (3.3)       | 10/135 (7.4)      | <b>_</b>                    | 0.45 (0.18, 1.10) |                            |
| Age                                                                                                                                                                                     |                   |                   |                             |                   | 0.16                       |
| >75                                                                                                                                                                                     | 12/124 (9.7)      | 6/71 [8.4]        |                             | 1.20 (0.45, 3.21) |                            |
| ≼75                                                                                                                                                                                     | 40/709 (5.6)      | 35/356 (9.8)      | _ <b>~</b> _                | 0.56 (0.35, 0.88) |                            |
| Gender                                                                                                                                                                                  |                   |                   |                             |                   | 0.61                       |
| Male                                                                                                                                                                                    | 39/628 (6.2)      | 28/312 (9.0)      |                             | 0.69 (0.42, 1.11) |                            |
| Female                                                                                                                                                                                  | 13/205 (6.3)      | 13/115 (11.3)     | <b>\</b>                    | 0.54 (0.25, 1.16) |                            |
| Diabetes                                                                                                                                                                                |                   |                   |                             |                   | 0.91                       |
| Diabetic                                                                                                                                                                                | 18/280 [6.4]      | 15/153 (9.8)      | <b>_</b>                    | 0.66 (0.33, 1.31) |                            |
| Non-diabetic                                                                                                                                                                            | 34/552 (6.2)      | 26/273 (9.5)      | <b>_</b>                    | 0.63 (0.38, 1.05) |                            |
| Lesion Length                                                                                                                                                                           |                   |                   |                             |                   | 0.25                       |
| >26 mm                                                                                                                                                                                  | 4/78 (5.1)        | 6/36 (16.7)       |                             | 0.31 (0.09, 1.11) |                            |
| ≤ 26 mm                                                                                                                                                                                 | 48/746 (6.4)      | 35/387 (9.0)      |                             | 0.69 (0.45, 1.07) |                            |
| ACS <sup>+</sup>                                                                                                                                                                        |                   |                   |                             |                   | 0.24                       |
| ACS                                                                                                                                                                                     | 24/426 [5.6]      | 23/209 [11.0]     | <b>_</b>                    | 0.50 (0.28, 0.89) |                            |
| Non-ACS                                                                                                                                                                                 | 28/407 (6.9)      | 18/218 (8.3)      | <b>_</b>                    | 0.82 (0.45, 1.48) |                            |
| *Small vessels defined as < 2.75mm.<br>†ACS defined as: subjects with unstable angina or any elevated cardiac enzyme:<br>(any pre procedure CK, CK MB or Troponin out of normal range). | s at baseline     |                   | 0,01 0,1 1 10               |                   |                            |



Kandzari et al. Lancet 2017

## BIOFLOW V Multivariable Analysis of Target Vessel MI

|                                              | Odds Ratio [95% CI] | P value |
|----------------------------------------------|---------------------|---------|
| Orsiro vs. Xience                            | 0.56 [0.35, 0.91]   | 0.020   |
| Number of stents implanted (per patient)     | 1.13 [0.58, 2.19]   | 0.729   |
| Subjects with two vessels treated            | 1.82 [0.79, 4.23]   | 0.162   |
| Number of target lesions (per patient)       | 1.14 [0.52, 2.53]   | 0.743   |
| Total stent lengths (mm) (sum per patient)   | 1.00 [0.98, 1.03]   | 0.934   |
| History of MI                                | 1.69 [1.02, 2.81]   | 0.041   |
| Subjects with overlapping stents vs. without | 1.43 [0.61, 3.36]   | 0.410   |

Kandzari et al. Lancet 2017



## BIOFLOW V TLF According to Stent Diameter

| TLF to 12 Months  | to 12 Months Orsiro<br>(n = 884) |          | Difference<br>[95% CI] | Posterior<br>Probability of<br>Interaction |
|-------------------|----------------------------------|----------|------------------------|--------------------------------------------|
| Study stent       | 6.8%                             | 9.8%     | -3.0%                  | 0.616                                      |
| diameter ≤ 3.0 mm | (36/531)                         | (26/266) | [-7.4%, 1.0%]          |                                            |
| Study stent       | 5.2%                             | 9.3%     | -4.2%                  |                                            |
| diameter > 3.0 mm | (15/290)                         | (14/150) | [-9.8%, 0.8%]          |                                            |



## Revisiting the Thin Strut Hypothesis (or Principle)

- Thinner stent struts produce less inflammation, vessel injury, neointimal proliferation and thrombus formation compared with thicker struts<sup>1</sup>
- Over 15 years of DES iteration, progression to thinner struts is associated with lower rates of target vessel MI
  - Stainless steel (132  $\mu m$  to 140  $\mu m$ ) to chromium alloys (81  $\mu m$  to 91  $\mu m$ ) translate to ~40% to ~80% reductions in both procedural and late-term target vessel  $Ml^2$
- In BIOFLOW V, an ~20  $\mu m$  difference between BP SES and DP EES is associated with 40% reduction in TV MI

<sup>1</sup>Kolandaivelu. Cirulation 2011; Soucy. EuroIntervention 2010; Kastrati. Circulation 2001; Pache. JACC 2003 <sup>2</sup>ENDEAVOR III; SPIRIT III; ENDEAVOR IV; ENDEAVOR Pooled Analysis; SPIRIT IV



#### Ultra-thin (<70 μm) vs Thicker Strut 2<sup>nd</sup> Generation DES: 1-yr TLF 10 RCTs, 11,658 pts: Orsiro (60 μm), MiStent (64 μm), BioMime (65 μm)

|                                                                                                                                                                              | Ultra-ti                                                  | hin                                                                       | 2 <sup>nd</sup> Gene                            | ration                                                  |       |                                                                                                                                                                                                                                                                                       | % Weight                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Study                                                                                                                                                                        | Events                                                    | N                                                                         | Events                                          | N                                                       |       | RR (95% CI)                                                                                                                                                                                                                                                                           | (D+L)                                                                     |
| Orsiro<br>BIOFLOW II<br>BIOFLOW IV<br>BIOFLOW V<br>BIORESORT<br>BIOSCIENCE<br>ORIENT<br>PRISON IV<br>SORT OUT VII<br>D+L Subtotal (I-squar<br>I-V Subtotal<br><b>MiStent</b> | 19<br>20<br>52<br>47<br>69<br>6<br>6<br>48<br>red = 0.0%, | 298<br>354<br>884<br>1169<br>1063<br>250<br>165<br>1261<br><i>p</i> =0.88 | 12<br>9<br>41<br>53<br>70<br>4<br>8<br>58<br>1) | 154<br>176<br>450<br>1173<br>1056<br>122<br>165<br>1264 |       | $\begin{array}{c} 0.82 \ (0.40, \ 1.69) \\ 1.10 \ (0.50, \ 2.43) \\ 0.65 \ (0.43, \ 0.97) \\ 0.89 \ (0.60, \ 1.32) \\ 0.98 \ (0.70, \ 1.37) \\ 0.73 \ (0.21, \ 2.59) \\ 0.75 \ (0.26, \ 2.16) \\ 0.83 \ (0.57, \ 1.22) \\ 0.85 \ (0.71, \ 1.01) \\ 0.85 \ (0.71, \ 1.01) \end{array}$ | 4.83<br>4.08<br>15.07<br>16.37<br>22.84<br>1.58<br>2.25<br>17.26<br>84.29 |
| DESSOLVE-III<br>D+L Subtotal (I-squar<br>I-V Subtotal<br>BioMime                                                                                                             | 40<br>red = NA, <i>p</i>                                  | 703<br>= NA)                                                              | 45                                              | 695                                                     |       | 0.88 (0.57, 1.35)<br>0.88 (0.57, 1.35)<br>0.88 (0.57, 1.35)                                                                                                                                                                                                                           | 13.92<br>13.92                                                            |
| Merit-V<br>D+L Subtotal (I-squar<br>I-V Subtotal<br>All Stents                                                                                                               | 5<br>red = NA, p                                          | 170<br>= NA)                                                              | 6                                               | 86                                                      |       | 0.42 (0.13, 1.38)<br>0.42 (0.13, 1.38)<br>0.42 (0.13, 1.38)                                                                                                                                                                                                                           | 1.79<br>1.79                                                              |
| D+L Subtotal (I <sup>2</sup> = 0.0<br>I-V Subtotal                                                                                                                           | 0%, <i>p</i> = 0.88                                       | 8)                                                                        |                                                 |                                                         |       | 0.84 (0.72, 0.99)<br>0.84 (0.72, 0.99)                                                                                                                                                                                                                                                | 100.00                                                                    |
| Driven by les                                                                                                                                                                | s TV-M                                                    | l with                                                                    | n no                                            |                                                         | 0.1 1 | 10                                                                                                                                                                                                                                                                                    |                                                                           |
| differences in                                                                                                                                                               | n CD or                                                   | ID-T                                                                      | LR                                              | Favors                                                  |       | rs 2 <sup>nd</sup> Generation                                                                                                                                                                                                                                                         |                                                                           |
| Bangalore et al Submitter                                                                                                                                                    | 1                                                         |                                                                           |                                                 |                                                         |       |                                                                                                                                                                                                                                                                                       |                                                                           |

Bangalore et al. Submitted

#### Ultra-thin (<70 μm) vs Thicker Strut 2<sup>nd</sup> Generation DES: 1-yr Def/Prob Stent Thrombosis 10 RCTs, 11,658 pts: Orsiro (60 μm), MiStent (64 μm), BioMime (65 μm)

|                            | Ultra-th      | nin            | 2 <sup>nd</sup> Gener | ation |                                       |                            | % Weight         |
|----------------------------|---------------|----------------|-----------------------|-------|---------------------------------------|----------------------------|------------------|
| Study                      | <b>Events</b> | N              | Events                | N     |                                       | RR (95% CI)                | (D+L)            |
| Orsiro                     |               |                |                       |       |                                       |                            | Mercini          |
| BIOFLOW II                 | 0             | 298            | 0                     | 154   |                                       | 0.52 (0.01, 26.04)         | 0.78             |
| BIOFLOW IV                 | 3             | 354            | 0                     | 176   |                                       | <b>3.48(0.18, 67.38)</b>   | 1.37             |
| BIOFLOW V                  | 4             | 884            | 3                     | 450   |                                       | 0.68 (0.15, 3.03)          | 5.36             |
| BIORESORT                  | 5             | 1169           | 6                     | 1173  |                                       | 0.84 (0.26, 2.74)          | 8.53             |
| BIOSCIENCE                 | 29            | 1063           | 35                    | 1056  |                                       | 0.82 (0.50, 1.35)          | 49.59            |
| ORIENT                     | 0             | 250            | 0                     | 122   |                                       | 0.49 (0.01, 24.59)         | 0.78             |
| PRISON IV                  | 1             | 165            | 2                     | 165   |                                       | 0.50 (0.05, 5.51)          | 2.08             |
| SORT OUT VII               | 11            | 1261           | 20                    | 1264  |                                       | 0.55 (0.26, 1.15)          | 22.19            |
| D+L Subtotal (I-squar      | ed = 0.0%,    | <i>p</i> =0.95 | 6)                    |       | · · · · · · · · · · · · · · · · · · · | 0.74 (0.51, 1.07)          | 90.69            |
| I-V Subtotal               |               |                |                       |       | · · · · · · · · · · · · · · · · · · · | 0.74 (0.51, 1.07)          |                  |
| MiStent                    |               |                |                       |       | _4U_                                  |                            | (MAC Inter May 1 |
| DESSOLVE-III               | 5             | 703            | 6                     | 695   |                                       | 0.82 (0.25, 2.70)          | 8.53             |
| D+L Subtotal (I-squar      | red = NA, p   | = NA)          |                       |       |                                       | 0.82 (0.25, 2.70)          | 8.53             |
| I-V Subtotal               |               |                |                       |       |                                       | 0.82 (0.25, 2.70)          |                  |
| BioMime                    |               |                |                       |       |                                       |                            |                  |
| Merit-V                    | 0             | 170            | 0                     | 86    |                                       | 0.51 (0.01, 25.49)         | 1.79             |
| D+L Subtotal (I-squar      | red = NA, p   | = NA)          |                       |       |                                       | 0.51 (0.01, 25.49)         | 1.79             |
| I-V Subtotal               | 5.8           | 955            |                       |       |                                       | 0.51 (0.01, 25.49)         |                  |
| All Stents                 |               |                |                       |       |                                       |                            |                  |
| D+L Subtotal ( $I^2 = 0.0$ | %, p = 0.99   | 9)             |                       |       | 0                                     | 0.74 (0.53, 1.05)          | 100.00           |
| I-V Subtotal               |               |                |                       |       | <b>4</b>                              | 0.74 (0.53, 1.05)          |                  |
|                            |               |                |                       |       |                                       |                            |                  |
|                            |               |                |                       |       | .1 1 10                               |                            |                  |
|                            |               |                |                       | Favor | s Ultra-thin Favors                   | 2 <sup>nd</sup> Generation |                  |
|                            |               |                |                       |       |                                       | 2 Contraction              |                  |

Bangalore et al. Submitted

# Orsiro Bioresorbable Polymer, Ultra-Thin Strut DES Conclusions

- In an international, randomised trial (BIOFLOW V), treatment with the ultrathin strut Orsiro BP SES
  was superior to the Xience DP EES regarding 12 month TLF and MI
  - Differences in MI observed early but persisted in landmark analysis
- Revascularization with Orsiro BP SES was associated with favorably low TLR and stent thrombosis
- Bayesian pooled analysis including patient level outcomes from BIOFLOW II and IV trials demonstrated unequivocal non-inferiority with mean TLF treatment difference of -2.6 % favoring Orsiro and posterior probability of superiority 96.9%
- Results are consistent with both prior and evolving evidence supporting ultra-thin strut DES as a contribution toward improved outcomes; *level setting expectations regarding when, where and how differences will be observed*
- These results endorse the safety and efficacy of the ultrathin Orsiro BP SES in patients representative of those treated in clinical practice and advance a new standard for DES comparison

